НОСИМОСПОСОБНОСТ НА СТОМАНОБЕТОННИ КОЛОНИ, ПОДЛОЖЕНИ НА ОСОВИ СИЛИ

Атанас А. Георгиев

ULTIMATE LIMIT STATES OF REINFORCED CONCRETE COLUMNS UNDER AXIAL FORCES

Атанас А. Георгиев

Анализите в този доклад се основават на прецизн прочит и стриктно прилагане на изискванията на EC2 [1], отнасящи се до приемането на ексцентрицитетите при изследване на носимоспособността на колони с центрично натоварване. Трябва да се признае, че в литературата на български език (препоръки, ръководства, указания, вкл.[3]) геометричните несъвършенства са отчетени твърде консервативно (вж. т.1). В [4] авторът на тази статия посочва, че това е „приемливо за нишите условия” имайки предвид случаите на заменен контрол при изпълнението. Те обаче не трябва да са основание за „компенсация” чрез моделите за носимоспособност.

Изследванията са проведени и резултатите са отнесет за носимоспособността на стоманобетонни колони от хоризонтално неотместими (укрепени) системи при следните условия:

1. Силовите ефекти от 1 ред са само осови (нормални) сили N_{Ed}, без отгъвачи моменти, т.е. с ексцентрицитет $\epsilon_1 = M_{Ed} / N_{Ed} = 0$. Това е характерно за случаите на моделиране на ставни връзки на колоните с междуътажните конструкции или при разглеждане на стойките в направление перпендикулярно на неотместимите равнинни рамки.

2. Колоните са от обикновен бетон (клас от C20/25 до C50/60), армирани със стомана клас B500 ($f_{yd} = 435\text{ MPa}$, $\varepsilon_{yd} = 2.175\%$). Резултатите могат да се прилагат и в случаите със стомана клас B420, но са силно консервативни.

3. Колоните са с правоъгълно или с квадратно напречно сечение. В направлението на разглежданата равнина надлъжната армировка е симетрична и може да е аранжирана в два ($A_{s, int} = 0$) или повече реда (фиг.1).

Фиг.1. Случая на разпределение на прътите в напречно сечение на колоните

1. Общо за ексцентрицитетите

1) Дори и при разглежданя случай на осово натоварване ($\epsilon_1 = M_{Ed} / N_{Ed} = 0$), в крайно гранично състояние при дълготрайни и извънредни изчислителни ситуации трябва да се отчитат ексцентрицитетите, дължащи се на геометрични носимоспособности (ϵ_1), както и такива, породени от отвътането от 1 ред (ϵ_2) – фиг.2.

1 Проф. д-р инженер, УАСГ-София, Катедра „Масивни конструкции”, atanasa@vip.bg
Prof. Dr. Eng., UACEG-Sofia, Department “Reinforced Concrete Structures”, atanasa@vip.bg
(2) Носимоспособността на нормалните сечения трябва да се проверява с общ ексцентрицитет $e = \max\{e_1 + e_2; e_0\}$.

\[e_0 = h / 30 \geq 20 \text{mm} \]

където

\[e_0 = h / 30 \geq 20 \text{mm} \]

е минималната стойност, регламентирана в ЕС2, т.6.1(4).

Консервативното приемане, за което се спомена във въведенето, е тълкуването на e_0 като ексцентрицитет e_i, към която трябва да се добавя e_2.

(3) В съответствие с условията анализа е да се установят максималните стройности $(l_0 / h)_{\text{max}}$ на колоните с особи сили, за които

\[e_1 + e_2 = e_0. \]

Така проверките за носимоспособност ще се провеждат директно, без необходимост от други проверки, с ексцентрицитет $e = e_0$, който се определя еднозначно от (2) в зависимост от приетата височина h на напречното сечение.

(4). При това, двете главни направления на напречните сечения се разглеждат независимо (равнинен нецентрен натиск), както независимо се приемат и случайните ексцентрицитет e_i - вж. EC2, т.5.8.9(2). Поради малките стойности на e_0, ефектът от двойното огъване се пренебрегва и в случая на големи силови ексцентрицитети e_1 в другото направление.

(5) В следващите точки 2 и 3 са решени предварителни задачи, необходими за изследванията на деформациите от II ред (ексцентрицитетите e_2).

2. Деформации на напречните сечения при много малки ексцентрицитети (MME)

(1) В [3] с MME са дефинирани случаите, когато цялото напречно сечение е натиснато, т.е. $x \geq h$. Горната граница на ексцентрицитетите e_{max} на натисковата сила N_{Ed} трябва да гарантира тривъгълната диаграма на деформациите на натиск (фиг.3.а), а долната граница e_{min} - провлачането на по-силно натиснатата армировка A_{e2} от стомана клас B500 (фиг.3.б).

Фиг.3. Граници на деформациите за случаите на MME

(2) Доказва се, че регламентираното в ЕС2 $e_0 = h / 30 \geq 20 \text{mm}$ гарантира провлачане на A_{e2} от клас B500, като попада в дефинираните по-горе граници на MME, които (например $d_1 / h = 0.10$) са
(0,29 – 0,15 / n_{Ed}) ≥ e / h ≥ (0,044 – 0,035 / n_{Ed}), \tag{4}

където

\[n_{Ed} = N_{Ed} / (b \cdot h \cdot f_{cd}) \tag{5}\]

с относителната натискова сила. Тя може да варира (в зависимост от класа на бетона и от общи коекфциент на надлъжно армиране \(\rho_l \)) в границите от 0,80 (при \(\rho_l = 0 \)) до 2,50 (при \(\rho_l = 0,04 \)) – вж. и т.3(2)

3. Носимоспособност при ММЕ със симетрична армировка

(1) В [3] е анализирана големината на силата в бетона \(F_c \), която зависи от пълнотата на диаграмата на натисквите напрежения (фиг.4). Установено е, че моментите на тези силни спрямо по-слабо натиснатата армировка \(A_{s1} \) е постоянна величина, която най-лесно може да се установи с помощта на симетричния правовъглен блок на напреженията. При това за проверките

Фиг.4. Обосновка на приемането на пълен равновесен блок на напрежения в бетона в случаите на много малък ексцентрициитет в модела за носимоспособност [3]

(изчисляването) на носимоспособността, моментовото равновесие е достатъчно и неизвестните по-малки напрежения в армирвката \(A_{s1} \) са без значение. На фиг.4 е представена по-прицела обосновка за приемането на правовъглен блок, като са използвани по точните параметри на параболично-линейната диаграма: пълнота 0,81 (а не 0,80) и ц.т. на 0,416h от горния ръб (а не 0,4h).

(2) Площта на \(A_{s2} = A_{s, tot} / 2 \) се определя от моментово условие, записано за нивото на армирвката \(A_{s1} \) (фиг.5.a). В параметричен вид то е

\[\omega_{tot} = 2 n_{Ed} \cdot e_s / z_s^2 - 1, \tag{6}\]

където

\[\omega_{tot} = (A_{s, tot} / b h) (f_{yd} / f_{cd}) \tag{7}\]

е механическият коекфциент на армиране с надлъжна армировка. Теоретичните граници на стойностите му са между 0,10 и 1,50, но приложните са по-тесни.

Фиг.5. Двата модела за носимоспособност при нецентричен натиск с ММЕ

(3) Същият резултат може да се получи, ако нецентричният натиск с ММЕ се приеме за условен центричен, при условие, че носимоспособността се редуцира с подходящ коекфциент \(\varphi_0 < 1,0 \) или нормалната сила, приета като центрична, се завиши до \(N_{Ed} / \varphi_0 \). От фиг.5.b следва:
\[n_{Ed} = \varphi_0 (1 + \alpha_{l0}) \]
(8)

или \[\alpha_{l0} = n_{Ed} / \varphi_0 - 1. \]
(9)

От равенства (7) и (9) за коэффициента \(\varphi_0 \) се извежда изразът

\[\varphi_0 = 1 / (2c / z_s + 1), \]
(10)

който зависи еднозначно от предварително известни геометрични параметри.

В таблица 2 са изчислени стойностите на \(\varphi_0 \) за различна височина \(h \) на напречни сечения на колони с \(d_l / h = 0,10 \geq 50 \text{mm} \), подложени на натиск с минималния ексцентрицитет \(e = e_0 = h / 30 \geq 20 \text{mm} \).

<table>
<thead>
<tr>
<th>(h, \text{mm})</th>
<th>250</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>500</th>
<th>(\geq 600)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z_s, \text{mm})</td>
<td>150</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>400</td>
<td>(0,8h)</td>
</tr>
<tr>
<td>(e, \text{mm})</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>(h / 30)</td>
</tr>
<tr>
<td>(\varphi_0)</td>
<td>0,79</td>
<td>0,83</td>
<td>0,88</td>
<td>0,91</td>
<td>0,92</td>
<td></td>
</tr>
</tbody>
</table>

4. Геометрични несъвършенства (имперфекции) \(e_i \)

(1) Те се приемат в зависимост от ефективната дължина \(l_0 \) на колоната и от етажната \(l \) височина \(l \), като при неотместваемите системи \(l_0 \leq l \) (фиг.1).

(2) В таблица 2 са представени относителните стойности \(e_i / h \) като функция на \(l_0 / h \).

<table>
<thead>
<tr>
<th>(l_0, \text{m})</th>
<th>(l_0 \leq 4,0)</th>
<th>(4,0 < l_0 \leq 9,0)</th>
<th>(l_0 > 9,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_i / h)</td>
<td>((l_0 / h) / 400)</td>
<td>(2(l_0 / h) / (400 \sqrt{1}))</td>
<td>((2 / 3)(l_0 / h) / 400)</td>
</tr>
</tbody>
</table>

4. Ексцентрицитети от II ред \(e_2 \)

Те се изчисляват с по-достъпния ,,метод на номиналната кривина``. Той е представен подробно в [3], а тук са направени уточнения, които се налагат от някои неконсервативни приемания в EC2.

(1) Преместването \(e_2 \) в критичното сечение се представя като функция на кривината \((1 / r) \) в същата област (фиг.6):

\[e_2 = (1 / r) \sigma_0^2 / \pi^2. \]
(11)

Кривината \((1 / r) \) зависи от много фактори, които модифицират формулата (11):

\[e_2 = [K_r K_f (1 / n_0)] \sigma_0^2 / 10. \]
(12)

(2) Максималната кривина \((1 / n_0) \) се получава при едновременно провлачане на опънната и на натискова армировка в напречното сечение (фиг.6.a):

\[(1 / n_0) = 2 e_{yFD} / z_s = (f_{yFD} / E_s) / (0,5 z_s). \]
(13)

Фиг.6. Към определянето на ексцентрицитетите от II ред \(e_2 \)
(3) В случаите на нецентричен натиск с ММЕ сеченията са изцяло натискани и провлачане само по-силно натискана армировка. Затова (1/\(n_0\)) трябва да се редуцира. Коефициентът за редукция на кривината \(K_r\) (фиг.6.7) е афинен на взаимодействието \(m_{Ed} - n_{Ed}\) на относителните стойности на разрезните усилия. В областта на разрушение от натиск той се изчислява от подобието на триъгълника:

\[
K_r = \frac{n_0 - n_{Ed}}{n_0 - n_{s,Ed}} \leq 1.0,
\]

където \(n_{Ed} = \varphi_0(1 + \omega_{tot})\) е фактическата относителна натискова сила, разположена ексцентрично (формула 8), а \(n_u = n_{Ed} / \varphi_0 = (1 + \omega_{tot})\) е относителната стойност на условната центрична сила (фиг.5.6). С горните уточнения се извежда:

\[
K_r = \frac{1 - \varphi_0}{1 - 0.4(1 + \omega_{tot})} \leq 1.0.
\]

В таблица 3 коефициентът \(K_r\) е изчислен с консервативната стойност \(\omega_{tot} = 0.10\).

<table>
<thead>
<tr>
<th>(h, \text{ mm})</th>
<th>250</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>(\geq 600)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_r)</td>
<td>0.33</td>
<td>0.27</td>
<td>0.19</td>
<td>0.14</td>
<td>0.13</td>
</tr>
</tbody>
</table>

(4) Преместванията трябва да се завишат с коефициент за пълзене на бетона \(K_p \geq 1.0\). Тук е приложен модифициранят израз от [3]

\[
K_p = 1.8 - 0.04b_0 / h,
\]

където е консервативен само за по-високите класове бетон и е изведен при следните изходни данни:
- ефективна дебелина на напречните сечения на колоните 100\(mm\);
- относителна влажност на въздуха 70%;
- коефициенти на пълзене \(\varphi(28,\infty) = 2.55 + 1.53\) за бетони от клас C20/25 до C50/60;
- ефективен коефициент на пълзене \(\varphi_{eff} = 0.7\varphi(28,\infty)\) - вж. EC2, т.5.8.4.2(2).

(5) От (12) за относителния ексцентрицитет \(e_2 / h\) може да се запише:

\[
e_2 / h = \alpha_0(1.8 - 0.04b_0 / h)(d_0 / h)^2,
\]

където \(\alpha_0 = 4.35 \times 10^{-4}K_p(h / z_s)\).

Коефициентите \(K_p\) са представени в таблица 3, а редом с армировките \(z_s = h - 2d_1\) в случаите без вътрешни пръти (\(\alpha_{int} = A_{s, int} / A_{tot} = 0\)) – в таблица 1. Фактическата височина на \(z_s\) се определя от

\[
z_s = 2i_s,
\]

където \(i_s\) е инерционният радиус на общата площ на армировката. Той се влияе съществено от разпределението на пръти успоредно на разглежданата равнина на огъване (фиг.7). Формула (19) е с ясен физически смисъл и много по-прецизна от приближението в EC2, т.8.8.3.2(2).

Фиг. 7. Приложения случаи на аранжировка на вътрешни пръти \(\alpha_{int} = A_{s, int} / A_{tot}\)

Характерните стойности на коефициента \(\alpha_0\) по формула (18) в зависимост от редуцираните стойности на \(z_s\) (т.е. от вътрешната армировка \(\alpha_{int} = A_{s, int} / A_{tot}\) и за различни височини на
капречните сечения са систематизирани в таблици 4.

<table>
<thead>
<tr>
<th>h , mm</th>
<th>250</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>≥ 600</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_{\text{int}} = 0$</td>
<td>2.40</td>
<td>1.76</td>
<td>1.10</td>
<td>0.76</td>
<td>0.71</td>
</tr>
<tr>
<td>$\alpha_{\text{int}} = 0.25$</td>
<td>-</td>
<td>2.05</td>
<td>1.28</td>
<td>0.88</td>
<td>0.82</td>
</tr>
<tr>
<td>$\alpha_{\text{int}} = 0.40$</td>
<td>-</td>
<td>-</td>
<td>1.38</td>
<td>0.95</td>
<td>0.89</td>
</tr>
</tbody>
</table>

5. Границни стойности $(l_0/h)_{\text{max}}$

(1) Те са определени така, че сумарните ексцентрицитети от несъвършенства (табл. 2) и от II ред (определени за максималните стойности на α_0 от табл. 4) да изпълняват условие (3).

(2) В табл. 5 са представени и абсолютните стойности на ефективните височини $(l_0)_{\text{max}}$. Повторени са и стойностите на коефициента φ_0, изведен за $e = e_0$ и необходими за изследването на носимоспособността на нормалните сечения със симетрична армировка (т. 6). Ограниченето $l_0 \leq 6.0 m$ е необходимо за стопирание на нарастване при носещата височина върху общието преместване.

<table>
<thead>
<tr>
<th>h, mm</th>
<th>250</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>≥ 600</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(l_0/h)_{\text{max}}$</td>
<td>12.5</td>
<td>11.5</td>
<td>11.0</td>
<td>10.5</td>
<td>10.0</td>
</tr>
<tr>
<td>$(l_0)_{\text{max}}$, m</td>
<td>3.10</td>
<td>3.50</td>
<td>4.40</td>
<td>5.20</td>
<td>≤ 6.0</td>
</tr>
<tr>
<td>φ_0</td>
<td>0.79</td>
<td>0.83</td>
<td>0.88</td>
<td>0.91</td>
<td>0.92</td>
</tr>
</tbody>
</table>

6. Задачите за носимоспособност

(1) В общия случай сеченията на колоните са конструирани с вътрешни пръти с площ $A_{s,\text{int}}$ (фиг. 7), които за изчисления могат да се приемат съсредоточени в оста на напречното сечение, където деформациите на натиск са в границите от 1.75% до 1.95% (фиг. 3). С умерена консервativност за деформации в армировката $A_{s,\text{int}}$ може да се приеме минималната стойност 1.75%, която означава напрежение $0.80 f_{yd}$ за стомана клас B500 (за клас B420 напрежението е $\approx f_{yd}$).

Фиг. 8. Моделите за носимоспособност при нецентричен натиск с ММЕ и вътрешна армировка

(2) Подобно на анализа в т. 3, на фиг. 8 са представени базовият (вляво) и условияния модел за носимоспособност на напречните сечения с вътрешна армировка.

(3) Базовият модел на фиг. 8а може да се прилага във всички случаи на нецентричен натиск с ММЕ, за която са спазени границите (4). Необходимо е да прогнозира аранжирането на вътрешни пръти в напречното сечение, т.е. $\alpha_{\text{int}} = A_{s,\text{int}} / A_{\text{tot}}$.

(4) Условият модел на фиг. 8б с коефициенти φ_0 е приложим за случаите, при която са спазени ограниченията за $(l_0/h)_{\text{max}}$ от табл. 5. От хоризонталното равномвесие в този модел се решава.
главната (правата) задача - проверка на носимоспособността.

\[N_{Ed} \leq f_0 (f_{cd} A_c + f_{yd} A_{s,tot} / k_{int}) \]

Другите (обратните) задачи се решават чрез познати модификации на уравнение (20).

7. Числен пример [4]

Външна колона на 3 етаж от осеметажна офис сграда с безпредвижни междуетажни конструкции:

- Клас на околната среда ХС1: бетон клас C25/30 (\(f_{cd} = 0,8525 / 1,5 = 14,2 \, MPa \))
- Стомана клас В500: \(f_{yd} = 435 \, MPa \)
- Напречно сечение \(40 / 40 \, cm \) с прогноза \(\sigma_{int} = A_{s, int} / A_{tot} = 0,25 \)

![Diagram](image)

- Ефективна дължина \(l_0 = l = 3,60 < 4,40 \, m \) \(\rightarrow \varphi = 0,88 \) (табл.5)
- Равностойни (симетрични) направления
- Коeficient \(k_{int} = 1 / (1 - 0,20 \sigma_{int}) = 1 / (1 - 0,20,0,25) = 1,05 \)
- Обща армировка:

\[A_{s, tot} = k_{int} (N_{Ed} / \varphi_0 - f_{cd} A_c) / f_{yd} = 1,05 (3100 / 0,88 - 1,42,1600) / 43,5 = 30,2 \, cm^2 \]

Приети: \(8 \varphi 22 \) (\(A_{s, tot} = 30,4 \, cm^2 \), \(\rho = 1,9 \% < 4,0 \% \))

8. Заключения

(1) От изследванията с прецизиран начин и вторични екцентрицитети в укрепени колони с центрично натоварване може да се обобщи, че за масовите в практиката случаи на напречни сечения и височини, проверките за носимоспособността са изключително достъпни и елементарни.

(2) Анализите показват, че методът в т.14.3 на [3], адаптиран от въпростата в нормите [2] подход, е напълно адекватен, но стойностите на коэффициентите \(\varphi \) там трябва да бъдат завишени.

(3) Трябва да е ясно също, че отношението \(l_0 / h \) макс изобщо не трябва да се съпоставя с известната гранична стройност \(A_{lim} \), която дефинира съвсем друг критерий – да се отчитат или не ефектите от II ред.

ИЗПОЛЗВАНА ЛИТЕРАТУРА
2. Норми за проектиране на бетонни и стоманобетонни конструкции, 1988г.
5. Csuka B., L. Kollar, Design of reinforced concrete columns under centric load according to Eurocode 2.